Writing Linear Equations Word Problems Worksheet
SOLVING WORD PROBLEMS WITH LINEAR EQUATIONS WORKSHEET
Problem 1 :
The table shows the temperature of a fish tank during an experiment. Wr ite the appropriate linear equation for the given situation and use the equation to find temperature at the 7th hour.
Problem 2 :
Lily has just opened her new computer store. She makes $25 on every computer she sells and her monthly expenses are $10,000. What is the minimum number of computer does she need to sell in a month to make a profit ?
Problem 3 :
Elizabeth's cell phone plan lets her choose how many minutes are included each month. The table shows the plan's monthly cost y for a given number of included minutes x. Write an equation in slope-intercept form to represent the situation and use it to estimate cost of plan for 800 minutes included.
Problem 4 :
The rent charged for space in an office building is a linear relationship related to the size of the space rented.At west main street office rentals, $750 rent charged for 600 square feet of space and $1150 rent charged for 900 square feet of space. Write an equation in slope-intercept form for the rent at West Main Street Office Rentals and use it to calculate the rent for 1200 square feet of space.
Solutions
Problem 1 :
The table shows the temperature of a fish tank during an experiment. Wr ite the appropriate linear equation for the given situation and use the equation to find temperature at the 7th hour. .
Solution :
Step 1 :
Notice that the change in the temperature is the same for each increase of 1 hour in time . So, the relationship is linear.
Since we want to find the temperature at the 7th hour, the appropriate linear equation for the given situation is slope-intercept form (y = mx + b), assuming "y" as temperature and "x" as hours.
Step 2 :
Choose any two points in the form (x, y), from the table to find the slope :
For example, let us choose (0, 82) and (1, 80).
Use the slope formula.
m = (y2 - y1) / (x2 - x1)
Substitute (0, 82) for ( x 1 , y 1 ) and (1, 80) for ( x 2 , y 2 ).
m = (80 - 82 ) / (1 - 0 )
m = -2 / 1
m = -2
Step 3 :
Find the y-intercept using the slope and any point from the table.
Slope-intercept form equation of a line :
y = mx + b
Plug m = -2, and (x, y) = (0, 82)
82 = -2(0) + b
82 = 0 + b
82 = b
Step 4 :
Now, plug m = -2 and b = 82 in slope-intercept form equation of a line.
y = mx + b
y = -2x + 82
Step 5 :
Find the temperature at the 7th hour.
Plug x = 7 in the equation y = -2x + 82.
y = -2(7) + 82
y = -14 + 82
y = 68
Hence, the temperature at the 7th hour is 68 ⁰ F.
Problem 2 :
Lily has just opened her new computer store. She makes $25 on every computer she sells and her monthly expenses are $10,000. What is the minimum number of computer does she need to sell in a month to make a profit ?
Solution :
Step 1 :
Let "y" stand for the profit and "x' stand for number of computers sold.
From the given information, we have
Profit = 27 x No. of computers sold - Monthly expenses
y = 27x -10,000
Step 2 :
Let us find the number of computers sold for no profit.
That is, find the value of "x" when y = 0.
Plug y = 0 in the equation y = 27x - 10,000.
0 = 25x - 10,000
Add 10,000 to both sides.
10,000 = 25x
Divide both sides by 25.
10,000 / 25 = 25x / 25
400 = x
Step 3 :
When Lily sells 400 computers in a month, her profit is equal to zero.
So, she has to sell more than 400 computer per month to make a profit.
To make a profit, the minimum number of computers per month, she needs to sell is 401.
Problem 3 :
Elizabeth's cell phone plan lets her choose how many minutes are included each month. The table shows the plan's monthly cost y for a given number of included minutes x. Write an equation in slope-intercept form to represent the situation and use it to estimate cost of plan for 800 minutes included.
Solution :
Step 1 :
Notice that the change in cost is the same for each increase of 100 minutes. So, the relationship is linear.
Step 2 :
Choose any two points in the form (x, y), from the table to find the slope :
For example, let us choose (100, 14) and (200, 20).
Use the slope formula.
m = (y2 - y1) / (x2 - x1)
Substitute (100, 14) for ( x 1 , y 1 ) and (200, 20) for ( x 2 , y 2 ) .
m = (20 - 14 ) / (200 - 100 )
m = 6 / 100
m = 0.06
Step 3 :
Find the y-intercept using the slope and any point from the table.
Slope-intercept form equation of a line :
y = mx + b
Plug m = 0.06, and (x, y) = (100, 14)
14 = 0.06(100) + b
14 = 6 + b
8 = b
Step 4 :
Now, plug m = 0.06 and b = 8 in slope-intercept form equation of a line.
y = mx + b
y = 0.06x + 8
Step 5 :
Estimate cost of plan for 800 minutes included.
Plug x = 800 in the equation y = 0.06x + 8.
y = 0.06(800) + 8
y = 48 + 8
y = 56
So, the cost of plan for 800 minutes included is $56.
Problem 4 :
The rent charged for space in an office building is a linear relationship related to the size of the space rented.At west main street office rentals, $750 rent charged for 600 square feet of space and $1150 rent charged for 900 square feet of space. Write an equation in slope-intercept form for the rent at West Main Street Office Rentals and use it to calculate the rent for 1200 square feet of space.
Solution :
Step 1 :
Identify the independent and dependent variables.
The independent variable (x) is the square footage of floor space.
The dependent variable (y) is the monthly rent.
Step 2 :
Write the information given in the problem as ordered pairs.
The rent for 600 square feet of floor space is $750 :
(600, 750)
The rent for 900 square feet of floor space is $1150 :
(900, 1150)
Step 3 :
Find the slope.
m = (y2 - y1) / (x2 - x1)
Substitute (600, 750) for ( x 1 , y 1 ) and (900, 1150) for ( x 2 , y 2 ) .
m = (1150 - 750 ) / (900 - 600 )
m = 400 / 300
m = 4/3
Step 4 :
Find the y-intercept.
Use the slope 4/3 and one of the ordered pairs (600, 750).
Slope-intercept form :
y = mx + b
Plug m = 4/3, x = 600 and y = 750.
750 = (4/3)(600) + b
750 = (4)(200) + b
750 = 800 + b
-50 = b
Step 5 :
Substitute the slope and y-intercept.
Slope-intercept form
y = mx + b
Plug m = 4/3 and b = -50
y = (4/3)x + (-50)
y = (4/3)x - 50
Step 6 :
Calculate the rent for 1200 square feet of space.
Plug x = 1200 in the equation y = (4/3)x - 50.
y = (4/3)(1200) - 50
y = 1600 - 50
y = 1550
So, the rent for 1200 square feet of space is $1550.
Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.
If you have any feedback about our math content, please mail us :
v4formath@gmail.com
We always appreciate your feedback.
You can also visit the following web pages on different stuff in math.
WORD PROBLEMS
HCF and LCM word problems
Word problems on simple equations
Word problems on linear equations
Word problems on quadratic equations
Algebra word problems
Word problems on trains
Area and perimeter word problems
Word problems on direct variation and inverse variation
Word problems on unit price
Word problems on unit rate
Word problems on comparing rates
Converting customary units word problems
Converting metric units word problems
Word problems on simple interest
Word problems on compound interest
Word problems on types of angles
Complementary and supplementary angles word problems
Double facts word problems
Trigonometry word problems
Percentage word problems
Profit and loss word problems
Markup and markdown word problems
Decimal word problems
Word problems on fractions
Word problems on mixed fractrions
One step equation word problems
Linear inequalities word problems
Ratio and proportion word problems
Time and work word problems
Word problems on sets and venn diagrams
Word problems on ages
Pythagorean theorem word problems
Percent of a number word problems
Word problems on constant speed
Word problems on average speed
Word problems on sum of the angles of a triangle is 180 degree
OTHER TOPICS
Profit and loss shortcuts
Percentage shortcuts
Times table shortcuts
Time, speed and distance shortcuts
Ratio and proportion shortcuts
Domain and range of rational functions
Domain and range of rational functions with holes
Graphing rational functions
Graphing rational functions with holes
Converting repeating decimals in to fractions
Decimal representation of rational numbers
Finding square root using long division
L.C.M method to solve time and work problems
Translating the word problems in to algebraic expressions
Remainder when 2 power 256 is divided by 17
Remainder when 17 power 23 is divided by 16
Sum of all three digit numbers divisible by 6
Sum of all three digit numbers divisible by 7
Sum of all three digit numbers divisible by 8
Sum of all three digit numbers formed using 1, 3, 4
Sum of all three four digit numbers formed with non zero digits
Sum of all three four digit numbers formed using 0, 1, 2, 3
Sum of all three four digit numbers formed using 1, 2, 5, 6
Writing Linear Equations Word Problems Worksheet
Source: https://www.onlinemath4all.com/solving-word-problems-with-linear-equations-worksheet.html
Posted by: williamsonmese1948.blogspot.com
0 Response to "Writing Linear Equations Word Problems Worksheet"
Post a Comment